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Robust Semi-Supervised Subspace Clustering via
Non-Negative Low-Rank Representation
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Abstract—Low-rank representation (LRR) has been success-
fully applied in exploring the subspace structures of data.
However, in previous LRR-based semi-supervised subspace clus-
tering methods, the label information is not used to guide the
affinity matrix construction so that the affinity matrix cannot
deliver strong discriminant information. Moreover, these meth-
ods cannot guarantee an overall optimum since the affinity matrix
construction and subspace clustering are often independent steps.
In this paper, we propose a robust semi-supervised subspace
clustering method based on non-negative LRR (NNLRR) to
address these problems. By combining the LRR framework and
the Gaussian fields and harmonic functions method in a single
optimization problem, the supervision information is explicitly
incorporated to guide the affinity matrix construction and the
affinity matrix construction and subspace clustering are accom-
plished in one step to guarantee the overall optimum. The affinity
matrix is obtained by seeking a non-negative low-rank matrix
that represents each sample as a linear combination of others.
We also explicitly impose the sparse constraint on the affinity
matrix such that the affinity matrix obtained by NNLRR is non-
negative low-rank and sparse. We introduce an efficient linearized
alternating direction method with adaptive penalty to solve
the corresponding optimization problem. Extensive experimental
results demonstrate that NNLRR is effective in semi-supervised
subspace clustering and robust to different types of noise than
other state-of-the-art methods.
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I. INTRODUCTION

SUBSPACE analysis is an important technology in sig-
nal processing and pattern recognition. An underlying

assumption of subspace analysis is that the data often contain
some types of structure [1]. Subspace has been success-
fully applied to different visual data such as face [2] and
motion [3] for data visual analysis and clustering [4], [5].
Subspace methods can be roughly divided into three cat-
egories. The first one is unsupervised subspace learning
and typical examples include principal component analysis
(PCA) [6], clustering and projected clustering with adaptive
neighbors (CAN) [7], locally line embedding [8], and locality
preserving projections [9]. The second category is supervised
subspace learning, in which the label information is used to
capture discriminant feature representation. The most popular
methods of this category are the well-known linear discrim-
inant analysis (LDA) [10], 2-D LDA [11], marginal fisher
analysis (12), and neighborhood minmax projections [13]. The
third category is semi-supervised subspace learning [14]–[16],
which utilizes relatively limited labeled data and sufficient
unlabeled data to obtain the subspace.

Subspace clustering is an important clustering problem
which attracts much attention in recent years. Generalized
PCA (GPCA) is a typical subspace method for clustering data,
which transforms the subspace clustering into the problem of
how to fit the data with polynomials [17]. Sparse subspace
clustering (SSC) method has been proposed to cluster data-
points that lie in a union of low-dimensional subspaces [18].
SSC can be used as spectral clustering method, which first
learns an affinity matrix from the training datapoints and then
obtains the final clustering results based on the constructed
affinity matrix by using the corresponding clustering method
such as normalized cuts [19] and Gaussian fields and harmonic
functions (GFHF) [15]. Random sample consensus clusters the
datapoints by modeling mixed data as a set of independent
datapoints drawn from a mixture of probabilistic distribu-
tions [20]. Unfortunately, some existing subspace clustering
methods (i.e., GPCA and matrix recovery [21]) assume that
the data strictly drawn from a single subspace. However, in
some real-world applications, the data cannot be character-
ized by a single subspace. Thus, it is reasonable to consider
that the data are approximately drawn from a mixture of
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several low-dimensional subspaces [1]. Recovering such sub-
space structure naturally imposes a challenging to the subspace
clustering. With this view, given a set of datapoints, which may
be corrupted by errors and approximately drawn from the sub-
spaces, a good subspace clustering should try to correct the
possible errors and at the same time to cluster data into their
respective subspaces with each clustering corresponding to a
subspace [1].

During the past two decades, a number of robust sub-
space clustering methods, which are mainly based on
low-rank representation (LRR) [1] and sparse representa-
tion theories have been proposed. The well-known robust
PCA (RPCA) [21], [22] can efficiently seize the low-
dimensional subspace structure by seeking a low-rank com-
ponent and an error component to approximate the original
data. Latent LRR (LatLRR) [23] and its robust version
(RobustLatLRR) [24] seamlessly integrate subspace cluster-
ing and feature exaction into a unified framework. LatLRR can
learn two low-rank matrices one of which is used for robust
subspace clustering and the other is able to robustly extract
salient features from the observation data. Latent SSC [25]
integrates dimensionality reduction and subspace clustering
into a framework. The use of the projection can reduce the
influence of noise to some extent. Non-negative low-rank
and sparse (NNLRS) [26] graph for semi-supervised learning
learns the weights of edges in graph by seeking a NNLRS
matrix that represents each datapoint as a linear combina-
tion of others. The obtained graph structure can capture both
global mixture of subspaces structure and locally linear struc-
ture of the data. Despite their great success based on LRR and
sparse representation theories, these methods have two obvious
disadvantages.

1) In most of these methods, robust subspace clustering
can be performed by first learning an affinity matrix
from the given data and then clustering the datapoints
to respective subspaces by using the corresponding clus-
tering methods. It is evident that these two steps are
independent and thus an overall optimum cannot be
guaranteed.

2) The labeled training samples are always insufficient due
to the expensive labeling cost. In the LRR-based sub-
space clustering, the affinity matrix plays a significant
role in exploiting the subspace structure. Thus, it is
necessary to use the limited label information to guide
the affinity matrix construction so that it can deliver
strong discriminant information. However, in the con-
ventional LRR-based subspace clustering methods, the
label information is not used to guide the affinity matrix
construction.

Inspired by the above insights, we propose a robust
semi-supervised subspace clustering via non-negative
LRR (NNLRR) method. By combining the LRR framework
and the GFHF method in a single optimization problem,
the supervision information is explicitly incorporated to
guide the affinity matrix construction and the affinity matrix
construction and subspace clustering are accomplished in one
step to guarantee the overall optimum. More specifically,
the affinity matrix is obtained by seeking a nonnegative

low-rank matrix that represents each data sample as a linear
combination of others. We also explicitly impose the sparse
and non-negative constraints on the affinity matrix such that it
is sparse and the elements in the affinity matrix can be directly
used to cluster data. Benefiting from the breakthroughs in
high-dimensional optimization [27]–[29], the optimization
problem can be solved by convex relaxation. The convex
optimization associated with the NNLRR model can be effi-
ciently solved by the linearized alternating direction method
with adaptive penalty (LADMAP) [26], [27], which can
efficiently use less auxiliary matrix and matrix inversion [26]
and thus it can effectively reduce the computation cost. We
conduct extensive experiments of semi-supervised subspace
clustering and the validity of NNLRR is demonstrated by
the experiment results. In summary, the contributions of this
paper includes the following.

1) The label information is explicitly incorporated to guide
the affinity matrix construction so that the affinity matrix
can effectively exploit the subspace structure of data.
Thus the data can be accurately clustered to respective
subspaces.

2) Unlike previous semi-supervised subspace clustering
methods which separately treat the affinity matrix con-
struction and clustering algorithm, NNLRR integrates
these two tasks into one single optimization framework
to guarantee the overall optimum.

The remaining of this paper is organized as follows.
Section II briefly reviews some methods that are closely
related to our method. Section III introduces the basis idea
of NNLRR and some related discussions. Extensive experi-
ments are conducted in Section IV. Finally, we conclude this
paper in Section V.

II. RELATED WORKS

Since the method proposed in this paper is based on
LRR [1] and GFHF [15], we briefly review them to help
reading this paper. Before delving in, we list some nota-
tions in the following. Sample set matrix is denoted as
X = [x1, . . . , xu, xu+1, . . . , xn] ∈ �m×n, where xi|ui=1 and
xj|nj=u+1 are the labeled and unlabeled samples, respectively.
The labels of labeled samples are denoted as yi ∈ {1, 2, . . . , c},
where c is the total number of classes. The label indicator
binary matrix Y ∈ �n×c is defined as follows: for each train-
ing sample xi(i = 1, 2, . . . , n), yi ∈ �c is its label vector. If xi

is from the kth (k = 1, 2, . . . , c) class, then only the kth entry
of yi is one and all the other entries are zero.

A. Gaussian Fields and Harmonic Functions

GFHF is a well-known semi-supervised learning method,
in which the predicted label matrix F ∈ �n×c is estimated
on the graph with respect to the label fitness and manifold
smoothness [30]. Let us denote Fi and Yi as the ith rows
of F and Y , respectively. GFHF minimizes the following
objective function:

min
F

1

2

n∑

i,j=1

∥∥Fi − Fj
∥∥2

Sij + λ∞
u∑

i=1

‖Fi − Yi‖2 (1)
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where λ∞ is a very large number such that∑u
i=1 ‖Fi − Yi‖2 = 0 is approximately satisfied and F is

the predicted labels for all the samples. Sn×n is the graph
weight matrix which represents the similarity of a pair of
training samples. As shown in [30], (1) can be reformulated as

min
F

1

2
Tr
(
FTLF

)+ Tr
(
(F − Y)TU(F − Y)

)
(2)

where L ∈ �n×n is the graph Laplacian matrix and calcu-
lated as L = D− S, where Dii =∑j Sij is a diagonal matrix.
U ∈ �n×n is also a diagonal matrix with the first u and the
rest n− u diagonal elements as λ∞ and 0, respectively.

B. Low-Rank Representation

We assume that the observed data matrix X ∈ �m×n

is approximately drawn from a union of c low-dimensional
subspaces {∏i}ci=1 contaminated by error E. The objective
function of LRR can be formulated as

min
Z,E

rank(Z)+ γ ‖E‖0, s.t. X = AZ + E (3)

where γ is a parameter and A is the dictionary that spans
the union of subspace

⋃c
i=1

∏
i. Minimizer Z is the lowest

rankness representation of Z with respect to the dictionary A.
E is the matrix that characterizes the error in the original X.
‖ · ‖0 is the sparsity measure and is defined as the number
of nonzero entries. Obviously, direct optimization of (3) is
NP-hard [31]. Thus the optimization problem of (3) is relaxed
into the following optimization problem:

min
Z,E
‖Z‖∗ + γ ‖E‖1, s.t. X = AZ + E (4)

where ‖Z‖∗ is the nuclear norm (i.e., the sum of the singular
values) of Z which can approximate the rank of Z. ‖E‖1 is
a good relaxation of ‖E‖0. When A = I, LRR degenerates to
RPCA, which is suitable for recovering a matrix drawn from
a single subspace. Generally, dictionary A is replaced by the
original matrix X. Thus, (4) can be written as

min
Z,E
‖Z‖∗ + γ ‖E‖1, s.t. X = XZ + E. (5)

When (5) is applied to subspace clustering, the obtained
Z is used to define an affinity matrix (|Z| + |ZT |), then the
clustering results are obtained by applying the correspond-
ing clustering method to the defined affinity matrix. In robust
semi-supervised subspace clustering, the affinity matrix is con-
structed by (5), and then the clustering algorithm such as
GFHF is directly applied to the constructed affinity matrix.

III. NNLRR

A. Motivations of NNLRR

In this paper, we focus on robust semi-supervised subspace
clustering. How to reasonably exploit the limited label infor-
mation and to ensure the algorithmic overall optimum are
two important issues in machine learning and computer vision
fields. The label information is very effective to improve the
discriminant ability of the affinity matrix [30]. However, as
shown in Section II-B, in LRR, it is evident that the lim-
ited label information is not exploited to guide the affinity

matrix construction. Moreover, in LRR, the affinity matrix is
first constructed and then the clustering algorithm is applied
to the constructed affinity matrix. Such independent two steps
cannot guarantee the overall optimum.

GFHF uses a concise way to incorporate the label informa-
tion into semi-supervised leaning, which provides a feasible
solution to address these two problems. Specifically, we inte-
grate LRR and GFHF into a unified framework so that the
label information can be introduced to guide the affinity matrix
construction and the affinity matrix construction and subspace
clustering are simultaneously performed in one step in order
to guarantee the overall optimum.

B. Model of NNLRR

The problem at hand is to design a compact model that
naturally unifies LRR and GFHF. Our idea is to simultaneously
perform the affinity matrix construction and semi-supervised
subspace clustering. Therefore, the model of NNLRR is given
as follows:

min
F,Z,E

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Zij + Tr
(
(F − Y)TU(F − Y)

)

+ γ ‖Z‖∗ + β‖E‖2,1
s.t. X = AZ + E, Z ≥ 0, ‖Z‖0 ≤ T (6)

where ‖E‖2,1 =∑n
j=1

√∑m
i=1(E

j
i)

2 is the �2,1-norm of E [32],

Ej
i is the (i, j)th entry of E. γ and β are the parameters to bal-

ance the importance of the corresponding terms. The other
variables have the same definitions as (2) and (4). The non-
negative sparse constraint (Z ≥ 0 and ‖Z‖0 ≤ T) is to ensure
that the obtained low-rank and sparse matrix can be directly
used as the affinity matrix. ‖E‖2,1 encourages the columns in
E to be zero, which assumes the error is “sample-specific,”
i.e., some samples are corrupted and the others are clean [1].
There of course are many choices to match the error term,
such as ‖E‖2F for the small Gaussian noise and ‖E‖1 for the
random corruption. In this paper, we focus on the �2,1-norm.
The first term evaluates the label fitness. The role of the sec-
ond term is the same as that in (2). The third term ensures
that Z can capture the global mixture of subspaces via low-
rank constraint. The fourth term tries to fit the error in the
original data. After we obtain the minimizer (Z∗,E∗), AZ∗
(or X − E∗) can be used to obtain a low-rank recovery of
matrix X. The obtained F can be directly used to perform
semi-supervised subspace clustering by using the following
way. If h = arg maxκ Fκi (i = u+ 1, . . . , n; κ = 1, . . . , c), then
the ith sample is assigned to the hth class, where Fκi denotes
the (i, κ)th entry of F.

C. Solution to NNLRR

The difficulty to solve the NNLRR problem (6) is that there
are three terms closely related to Z. A feasible way is to make
the objective function (6) separable. To this end, an auxiliary
matrix W is introduced into (6). We first convert (6) to the
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Algorithm 1 : Solving NNLRR by LADMAP
Input: Data set matrix X; Label indicator matrix Y;
Matrix U; Parameters γ and β;
Initialization: Z0 = W0 = O; E0 = O; F0 = O; Y1,0 = O;
Y2,0 = O; μ0 = 0.1, μmax = 107, ρ0 = 1.01, γ = 1,
ε1 = 10−7, ε2 = 10−6, θ = ‖A‖2F , k = 0;
while not converged do

1. Fix the others and update Z by solving (9)
2. Fix the others and update F by solving (10).
3. Fix the others and update E by solving (11).
4. Fix the others and update W by solving (12).
5. Update the multipliers as follows:{

Yk+1
1 ← Yk

1 + μk(X − AZk − Ek)

Yk+1
2 ← Yk

2 + μk(Zk −Wk)

6. Update the parameter μ follows:
μk+1 = min(μmax, ρμ

k), where

ρ =
{
ρ0 if μk
/‖X‖F ≤ ε2

1 otherwise

7. Check the convergence conditions{
‖X − AZk − Ek‖F/‖X‖F ≤ ε1 or

μk
/‖X‖F ≤ ε2

where 
 = max
(√
θ‖Zk − Zk+1‖F, ‖Wk −Wk+1‖F,

‖Ek − Ek+1‖F, ‖Fk − Fk+1‖F
)

8. Update k: k← k + 1.
end while
Output: F, Z, E.

following equivalent problem:

min
F,Z,E,W

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Wi,j + Tr
(
(F − Y)TU(F − Y)

)

+ γ ‖Z‖∗ + β‖E‖2,1
s.t. X = AZ + E, Z = W, W ≥ 0, ‖W‖0 ≤ T. (7)

This problem can be solved by the LADMAP which can use
less auxiliary matrix and matrix inversion (Z is not replaced
by another auxiliary matrix), hence computation cost can be
reduced. Equation (7) can be converted into the following
augmented Lagrangian function:

�(Z,W,F,E,Y1,Y2, μ)

=
n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Wi,j + Tr
(
(F − Y)TU(F − Y)

)

+ γ ‖Z‖∗ + β‖E‖2,1
+ 〈Y1,X − AZ − E〉 + 〈Y2,Z −W〉
+ μ

2

(
‖X − AZ − E‖2F + ‖Z −W‖2F

)

=
n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Wi,j + Tr
(
(F − Y)TU(F − Y)

)

+ γ ‖Z‖∗ + β‖E‖2,1
+ ψ(Z,W,E,Y1,Y2, μ)− 1

2μ

(
‖Y1‖2F + ‖Y2‖2F

)

s.t. W ≥ 0 (8)

where ψ(Z,W,E,Y1,Y2, μ) = μ/2(‖X−AZ−E+(Y1/μ)‖2F+‖Z − W + (Y2/μ)‖2F) and 〈A,B〉 = Tr(ATB). Y1 and Y2 are
Lagrange multipliers and μ ≥ 0 is a penalty parameter. The
LADMAP updates the variables Z,W,E, and F alternately,
by minimizing � with other variables fixed and then updates
Y1 and Y2. With some algebra, the updating scheme can be
designed as follows:

Zk+1 = arg min
Z
γ ‖Z‖∗

+
〈
�Zϕ

(
Zk,Wk,Ek, Yk

1 ,Yk
2 , μ

k
)
,Z − Zk

〉

+ μkθ

2

∥∥∥Z − Zk
∥∥∥

2

F

= arg min
Z
γ ‖Z‖∗ + μ

kθ

2

∥∥∥∥∥∥∥∥∥∥

Z − Zk

+

[
−XT

(
X − AZk − Ek + Yk

1

μk

)
+
(

Zk −Wk + Yk
2

μk

)]

θ

∥∥∥∥∥∥∥∥∥∥

2

F
(9)

Fk+1 = arg min
F

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2Wk

ij

+ Tr
(
(F − Y)T U(F − Y)

)

= arg min
F

Tr
(

FT LkF
)
+ Tr

(
(F − Y)T U(F − Y)

)
(10)

Ek+1 = arg min
E
β‖E‖2,1 + μ

k

2

∥∥∥∥∥X − AZk+1 + Yk
1

μk
− E

∥∥∥∥∥

2

F

(11)

Wk+1 = arg min
W≥0,‖W‖0≤T

Tr(�(R�W))

+ μk

2

∥∥∥∥∥W −
(

Zk+1 + Yk
2

μk

)∥∥∥∥∥

2

F

(12)

where �Zϕ is the partial differential of ϕ with respect to Z,
θ = ‖A‖2F in (9). L ∈ �n×n in (10) is the graph Laplacian
matrix and calculated as Lk = Dk −Wk, where Dk

ii =
∑

j Wk
ij

is the diagonal matrix. In (12), Rij = 1
2‖Fk+1

i − Fk+1
j ‖2, � is

the Hadamard product operator of matrices and � is a matrix
with all elements are ones. The complete algorithm is outlined
in Algorithm 1. Note that steps 1–3 of Algorithm 1 are convex
problems and both have closed form solutions. Step 1 is solved
via the singular value thresholding [33], it can be computed
in the closed form

Zk+1

= j γ

θμk

⎛

⎜⎜⎜⎜⎝
Zk −

[
−XT

(
X − AZk − Ek + Yk

1

μk

)
+
(

Zk −Wk + Yk
2

μk

)]

θ

⎞

⎟⎟⎟⎟⎠

(13)

where j is the thresholding operator with respect to the sin-
gular value γ /(θμk). It can be found that Z is solved by a
proximal method.
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For the problem in step 2, it is straightforward to set the
derivative of (10) with respect to F to zero, namely

∂
(
Tr
(
FTLkF

)+ Tr
(
(F − Y)TU(F − Y)

))

∂F
= 0 (14)

then, we have

Fk+1 =
(

Lk + U
)−1

UY. (15)

Step 3 is solved by via the following Lemma 1.
Lemma 1 [1], [34]: Let Q be a given matrix. If the optimal

solution to

min
P
α‖P‖2,1 + 1

2
‖Q− P‖2F (16)

is P∗, then the ith column of P∗ is

P∗i =
{ ‖Pi‖2−α‖Pi‖2 Qi if ‖Qi‖2 > 0

0 otherwise
(17)

where Pi and Qi are the ith columns of matrices P and Q,
respectively.

To ensure the solution of determining W is sparse, we
impose constraint of ‖Wi‖0 ≤ T on W. We decompose
problem (12) into n independent subproblems each of which
can be formulated as a weighted nonnegative sparse coding
problem, namely

min
Wi

Wi � Ri + μ
k

2

∥∥∥∥∥Wi −
(

Zk+1 + Yk
2

μk

)

i

∥∥∥∥∥

2

2
s.t. Wi ≥ 0, ‖Wi‖0 ≤ T (18)

where Wi and Ri are the ith (i = 1, 2, . . . , n) columns of
matrices W and R, respectively. And (18) has a closed form
solution [35], [36].

D. Discussion

In essence, the goal of our method is to estimate a func-
tion F on a NNLRS graph. The integration of the affinity
matrix learning and semi-supervised clustering can guarantee
that the estimated function F and the learned affinity matrix are
perfectly matched, i.e., the algorithmic optimum can be guar-
anteed. In addition, the label information of labeled samples
can enable the learned affinity matrix to have strong discrim-
inant ability. Generally, our method is based on two basic
assumptions: 1) local consistency and 2) manifold assump-
tions. The former implies that nearby samples are likely to
have the same label, whereas the latter says samples lying in
the same manifold tend to have the same label. In our method,
we use a NNLRS graph (affinity matrix) to approximate the
underlying manifold and simultaneously propagate labels to
unlabeled samples along the learned graph.

A vector Fi ∈ F (i = 1, 2, . . . , n) corresponds to a classifi-
cation function. ∀Fi ∈ F assigns c real values to sample xi and
the maximal value of c real values denotes the class of sample
xi belongs. To find the optimal vector Fi to accurately clas-
sify sample xi, the objective function of GFHF [30] is used as
the cost function. The first term of (6) is the smoothness cost,
which means that a good classification function not changes

too much between nearly samples. In other words, samples
that are close nearby tend to have the nearly same labels. By
using the constraint of X = AZ + E, the nearby samples are
selected to reconstruct the original samples. The second term
of (6) means a good classification function should not change
too much from the labels of the labeled samples. Note that
this term is only used on the labeled samples. The goal of the
third term of (6) is to enforce Z to have block-wise structure,
which explicitly represents the neighborhood to neighborhood
reconstruction. That is to say that the obtained affinity matrix
Z can better characterize the similarity of samples and thus the
label information can be accurately propagated by the learned
graph. The goal of the fourth term of (6) is to filter out the
noisy information.

E. Difference From NNLRS [26]

To our best knowledge, NNLRS is the most similar one
to ours. NNLRS is the originally designed for the semi-
supervised clustering problem by using the affinity matrix,
namely, NNLRS solves the following problem:

min
Z,E

‖Z‖∗ + β‖Z‖1 + λ‖E‖2,1
s.t. X = AZ + E, Z ≥ 0. (19)

Once obtaining the optimal Z∗, the column vectors of Z∗
are normalized by z∗i = z∗i /‖zi‖∗2 and the elements in each
column vector are pruned by a predefined threshold �

z∗ij =
{

z∗ij, if z∗ij ≥ �
0, otherwise.

(20)

Although we use the affinity matrix to perform the semi-
supervised clustering, our NNLRR is quite different from
NNLRS in three aspects.

1) In NNLRS, the NNLRS graph (the affinity matrix) is
firstly learned and then the clustering algorithms are per-
formed on the learned graph. In contrast, by integrating
GFHF and LRR into a unified framework, the affin-
ity matrix learning and semi-supervised clustering are
simultaneously accomplished in a step. Such integration
can guarantee the overall optimum.

2) In NNLRS, the limited label information is not exploited
to guide the affinity matrix construction, while in our
NNLRR, the label information is used to endow the
affinity matrix with strong discriminant ability.

3) In NNLRS, to obtain the optimal graph, the learned
affinity matrix needs to prune, i.e., some elements of the
affinity matrix should be set to 0 by a given threshold
value �. However, in practice, how to estimate the opti-
mal threshold value is dataset dependent. In NNLRR, by
integrating GFHF and LRR, the learned affinity matrix
is optimal without any extra operation.

F. Connection Between NNLRR and Other Methods

1) Connection Between NNLRR and GHFH [15]: If we set
U �= 0, γ = 0, and β → ∞, then the objective function of



FANG et al.: ROBUST SEMI-SUPERVISED SUBSPACE CLUSTERING VIA NNLRR 1833

NNLRR in (6) reduces the following problem:

min
F,Z

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Zij + Tr
(
(F − Y)TU(F − Y)

)

s.t. X = AZ, Z ≥ 0, ‖Z‖0 ≤ T (21)

which can be written as

min
F,Z

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Zij + Tr
(
(F − Y)TU(F − Y)

)

+ ν‖X − AZ‖2F,
s.t. Z ≥ 0, ‖Z‖0 ≤ T (22)

where ν is the parameter to balance the different terms. If
we further set ν = 0 and discard the constraints, then (22)
becomes the objective function of GFHF.

2) Connection Between NNLRR and CAN [7]: If we set
U = 0, γ = 0, and β →∞, then (6) reduces

min
F,Z

n∑

i=1

n∑

j=1

∥∥Fi − Fj
∥∥2

Zij + ν‖X − AZ‖2F
s.t. Z ≥ 0, ‖Z‖0 ≤ T (23)

which can be somewhat seen as the formulation of CAN in
the purpose of assigning the adaptive neighbors for each sam-
ple without using the constraints Z ≥ 0 and ‖Z‖0 ≤ T. Please
note that in CAN the affine constraint and rank constraint are,
respectively, imposed on Z and L (graph Laplacian matrix) to
ensure that the connected components in the resulted affin-
ity matrix are exactly equal to the cluster number [7] and
the orthogonal constraint FTF = I is used to avoid a trivial
solution.

3) Semi-Supervised CAN: If we set U �= 0, γ = 0, and
β → ∞. then (6) reduces (22) which is a formulation of
semi-supervised CAN by integrating GHFH and sample recon-
struction into a unified framework. Such integration guarantees
that for each sample the neighbor assignment is an adaptive
process.

G. Convergence and Complexity Analyses

The convergence of the exact augmented lagrange multi-
pliers algorithm has been proven in the condition that the
objective function is smooth [37]. It is very difficult to
prove the convergence of the more complicated LADMAP. In
RPCA [22], the convergence of inexact augmented lagrange
multipliers has been proven in which two variable matrices
were iterated alternately. The proposed NNLRR in this paper
involves four iterating variable matrices (Z,W,E,F) and the
objective of the optimization problem (6) is not smooth. Thus
it is not easy to prove the convergence in theory. According
to the theoretical results in [1], three conditions are suffi-
cient (but may not necessary) for Algorithm 1 that has a good
convergence properties which are as follows.

1) The parameter μ in step 6 is needed to be upper
bounded.

2) The so-called dictionary A (A = X in our method) is of
full column rank.

3) In each iteration step, the residual produced by η =
‖(Zk,Fk,Wk) − (Z,F,W)‖2F is monotonically decreas-
ing, where Zk and Wk, respectively, denote the solution
produced at the kth iteration and (Z,F,W) = arg min�
whose value is more than that of (Zk,Fk,Wk).

It has been shown in [1] that the above conditions can
be approximately satisfied. Condition 1 is easy to be guar-
anteed by step 6 in the proposed method. The dictionary A
can be substituted by the orthogonal basis of this dictionary
in practice and thus condition 2 is easy to obey. As discussed
in [1] and [38], the convexity of the Lagrangian function could
guarantee condition 3 satisfied to some extent, although it is
not easy to strictly prove the monotonically decreasing con-
dition. Therefore, Algorithm 1 can be expected to have good
convergence properties.

Generally speaking, the major computation burden of
NNLRR lies in step 1 since it involves the singular value
decomposition (SVD). Specifically, in step 1, the SVD is oper-
ated on an n × n matrix, which is time consuming if the
number of samples (i.e., n) is very large. As it is referred in [1],
by substituting A with the orthogonal basis of the dictionary,
the computation complexity of step 1 is O(nr2

A), where rA is
the rank of the dictionary A. The computation complexity of
step 2 is about O(n3). The computation complexity of step 3 is
about O(n2rA). The computation complexity of step 4 is triv-
ial owing its simple closed solution. Thus, the computation
complexity of NNLRR is O(τ (nr2

A + n3 + n2rA)) in general,
where τ is the number of iterations. The iteration number τ
depends on the choice of ρ; τ is small while ρ is large, and
vice versa.

IV. EXPERIMENTS

In the experiments, the proposed NNLRR method will be
tested using four datasets: 1) Yale [9]; 2) AR [2]; 3) Extended
YaleB [23]; and 4) COIL20 [30]. The compared methods
include LRR [1], SSC [18], LatLRR [23], RobustLatLRR [24],
Local subspace Analysis (LSA) [39], and NNLRS [26]. Since
the affinity matrix in NNLRR is nonnegative, we also com-
pare the performance of NNLRR and the non-negative sparse
graph (SPG) [40] in terms of semi-supervised clustering per-
formance. For the sake of fair comparison, apart from NNLRR,
all the other methods firstly construct an affinity matrix by
respective corresponding technique and then GFHF is per-
formed on the constructed affinity matrix to obtain the semi-
supervised clustering results. In addition, we modify all of the
compared methods to the same noise norm, i.e., the �2,1-norm
for fair comparison. For each dataset, we randomly select dif-
ferent samples from per subject as labeled samples and used
the remaining as unlabeled samples and all experiments are run
five times (unless otherwise stated) and then the mean clas-
sification result and standard deviation (%) are reported. The
parameters of all these methods are carefully adjusted in order
to obtain the best clustering results. From the experiment, we
can find the performance of NNLRR is robust to parameter
γ (see Fig. 3). Thus, we set γ = 1 in all the experiments
which can guarantee a satisfactory result. Better results may be
achieved with tuning it. Parameter β of NNLRR controls the
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TABLE I
CLUSTERING RESULTS (%) ON THE YALE DATASET. NOTE THAT # TR DENOTES THE NUMBER OF LABELED SAMPLES OF ONE SUBJECT

Fig. 1. Images of one person from the Yale face dataset.

Fig. 2. Some samples of using NNLRR to correct the errors in the Yale
face dataset. Left: the original data matrix X. Middle: the corrected data XZ.
Right: the error E.

tradeoff between the error term and other terms. The selection
of parameter β is usually based on the prior of the error level
of data. In our experiments, we used the grid-search strategy to
conduct parameter selection for each algorithm that we imple-
mented. The MATLAB code of NNLRR is publicly available
at http://www.yongxu.org/lunwen.html.

A. Experiment on the Yale Face Dataset

The Yale face dataset (http://www.cvc.yale.edu/projects/
yalefaces/yalefaces.html) contains 165 images of 15 individu-
als and each person provides 11 different images with various
facial expressions and lighting conditions. In our experiments,
each image was manually cropped and resized to 32 × 32
pixels. Fig. 1 shows the sample images of a person from the
Yale face dataset.

In this experiment, 2–6 images per person are randomly
selected as labeled samples and the remaining are regarded
as unlabeled samples. Parameter β of NNLRR is set to 34.
The clustering results are shown in Table I, in which NNLRR
outperforms other state-of-the-art algorithms. For example,
when we select 5 and 6 images per person as labeled sam-
ples, the classification accuracy of NNLRR is 78.44% and
82.33% which are, respectively, higher NNLRS (the sec-
ond best algorithm) by 1.56% and 0.80%, respectively. We
randomly select some images which contain different error:
glasses, beard, and expression, to demonstrate the performance
of corrupted images recovery by NNLRR. The recovery results
are shown in Fig. 2, in which these images with corruption
are approximately recovered (indicated with the red boxes).
Fig. 3 shows the clustering results (%) versus the variations of

(a) (b)

Fig. 3. Clustering results (%) versus parameter. (a) β. (b) γ .

Fig. 4. Convergence process for NNLRR.

parameter β and γ , respectively, in which the first six images
per person were labeled and the remaining were unlabeled.
Please note that the experiment (γ ) is just only to verify the
algorithmic robustness to γ . Fig. 4 shows the convergence
process of algorithm.

B. Experiment on the AR Face Dataset

AR face dataset contains over 4000 images corresponding to
126 persons. These images were captured under different facial
expressions, illuminations, and occlusions (sun glasses and
scarf). The pictures were taken under strictly controlled con-
ditions. In this experiment, we take all the images of the first
30 persons from a subset which provides 3120 gray images
from 120 subjects with each subject providing 26 images.
Thus, there are 718 images in total are selected in this exper-
iment. Each image is cropped and resized to 32 × 32 pixels.
Fig. 5 shows some images of one person from the AR dataset.
In this experiment, 2, 5, 8, 11, and 14 images per person
are randomly selected as labeled samples and the remaining
images are regarded as unlabeled samples. Parameter β of
NNLRR was set to 93.

http://www.yongxu.org/lunwen.html
http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
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TABLE II
CLUSTERING RESULTS (%) ON THE AR DATASET. NOTE THAT # TR DENOTES THE NUMBER OF LABELED SAMPLES PER SUBJECT

TABLE III
CLUSTERING RESULTS ON THE FIRST SUBSET. NOTE THAT # TR DENOTES THE NUMBER OF LABELED SAMPLES OF SUBJECT

Fig. 5. Some face images of one person from the AR dataset.

Table II shows the clustering results on the AR dataset.
It can be seen that the clustering performance of NNLRR is
almost better than all the compared algorithms. Especially,
when the size of labeled samples is small, the superiority of
NNLRR is very obvious. As the labeled samples increase,
LRR and NNLRR have almost similar performance.

In order to elaborate NNLRRs validity on different noises,
following [41], we test NNLRR and other algorithms on two
subsets of the AR face dataset. The first subset excludes the
images wearing glasses or scarf and thus the errors in this
subset are mainly shadows and expression (see Fig. 6). The
second subset includes only the first 13 face images and thus
the time-caused error is excluded (see Fig. 7). For the first sub-
set, 1–3 images per subject are randomly selected as labeled
samples and the remaining images are regarded as unlabeled
samples. For the second subset, the first seven images (no
glasses and scarf occlusions) per person are used as labeled
samples and the remaining images (glasses or scarf occlu-
sions) are used as unlabeled samples. Table III shows the
clustering results on the first subset, in which NNLRR out-
performs all the other methods (parameter β of NNLRR is
set to 120). Table IV shows the clustering results on the sec-
ond subset (parameter β of NNLRR is set to 160). From this
table, we can see that NNLRR outperforms other algorithms
when dealing occlusion. Although RobustLatLRR and NNLRS
have strong power in handing occlusion, the label information
is not used to guide the affinity matrix construction. Thus the
improvement of performances of them are not obvious.

C. Experiment on the COIL20 Dataset

The COIL20 dataset (http://www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php) contains 1440 images of

Fig. 6. Some face images of one person from the first subset of the AR
dataset.

Fig. 7. Some face images of one person from the second subset of the AR
dataset.

20 objects and each object provides 72 images. The images
of each subject were taken at pose intervals of 50. The
original images were normalized to 128× 128 pixels. In this
experiment, each image was converted to a gray-scale image
of 32 × 32 pixels for computational efficiency in the experi-
ments. Fig. 8 shows some images from the COIL20 dataset.
In this experiment, 2, 4, 6, 8, and 10 images per subject
are randomly selected as labeled samples and the remaining
images are used as unlabeled samples. Table V shows the
clustering results on the COIL20 dataset (parameter β of
NNLRR is set to 0.2). Again, NNLRR performs better than
the other methods.

D. Experiment on the Extended Yale B Dataset

The Extent Yale B dataset (http://www.cad.zju.edu.cn/home/
dengcai/Data/FaceData.html) consists of 2432 human face
images of 38 subjects. Each subject contains about 64 images
taken under different illuminations. Half of the images are cor-
rupted by shadows or reflection. Each image is cropped and
resized to 32 × 32 pixels. Fig. 9 shows some images of one
person from the Extended Yale B dataset. As with the AR
dataset, we use the first 18 persons and 1134 images in total
in the Extended Yale B to test different methods.

In this experiment, 4, 7, 10, 13, and 16 images per subject
are randomly selected as labeled samples and the remaining
images are regarded as unlabeled samples. It is obvious that
NNLRR outperforms other methods as elaborated in Table VI
(parameter β of NNLRR was set to 145). The classification
accuracy of NNLRR is higher than other methods on the most
of cases.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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TABLE IV
CLUSTERING RESULTS (%) ON THE SECOND SUBSET

TABLE V
CLUSTERING RESULTS (%) ON THE COIL20 DATASET. NOTE THAT # TR

DENOTES THE NUMBER OF LABELED SAMPLES PER SUBJECT

TABLE VI
CLUSTERING RESULTS (%) ON THE EXTENDED YALE B DATASET. NOTE THAT # TR

DENOTES THE NUMBER OF LABELED SAMPLES PER SUBJECT

Fig. 8. Some images from the COIL20 dataset.

Fig. 9. Some images of one person from the Extended Yale B dataset.

E. Experiment on Contiguous Occlusions and Random
Pixel Corruptions

In this section, we selected the first 15 persons from the
Extended Yale B face dataset in order to test the robustness
of NNLRR to different corruptions. We simulate various lev-
els of contiguous occlusions and random pixel corruptions as
follows.

1) Contiguous Occlusions: The block occlusions are ran-
domly added to different locations in the labeled and
unlabeled images with block size of 5 × 5, 10 × 10,
15× 15, and 20× 20 (see Fig. 10).

2) Random Pixel Corruptions: We randomly choose pixels
from labeled and unlabeled samples and corrupt them
by salt and pepper noises. The rates of corrupted pixels
are 5%, 10%, 15%, and 20% (see Fig. 10).

Thirty images per person are randomly selected as labeled
samples and the remaining images are used as unlabeled

Fig. 10. Some examples of original and corrupted images under varying
level of contiguous occlusions and different percentages of salt and pepper
noises.

samples. Since SPG is somewhat not suitable to address the
corruptions and thus we do not compare it in this experiment.
Tables VII and VIII, respectively, show the clustering results
of different algorithms on the contiguous occlusions and ran-
dom pixel corruptions. Obviously, the clustering performance
of NNLRR is better than other methods on these two cases,
which shows the robustness of NNLRR for the contiguous
occlusions and random pixel corruptions. Recovering a clear
face image from the images contaminated by different level
errors is not an easy job [41]. From Fig. 11, we can see
NNLRR can remove block and salt and pepper noises well.

F. Discussion

Based on the experimental results shown in the above
sections, the following observations can be concluded.

1) In most previous low-rank-based semi-supervised sub-
space clustering methods in which the label information
is not used so that the constructed affinity matrix can-
not deliver enough discriminant information and thus,
the performance of them cannot be obviously improved.
However, in NNLRR, the label information (i.e., label
matrix Y) is used to guide the affinity matrix construc-
tion. It can be found from the experiments that NNLRR
performs better than the state-of-the-art semi-supervised
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TABLE VII
CLUSTERING RESULTS (%) ON THE EXTENDED YALE B DATASET WITH CONTIGUOUS OCCLUSIONS

TABLE VIII
CLUSTERING RESULTS (%) ON THE EXTENDED YALE B DATASET WITH RANDOM PIXEL CORRUPTIONS

Fig. 11. Two examples of using NNLRR to recovery the corrupted Extended
Yale B face images. Left: the contaminated matrix X. Middle: the corrected
data XZ. Right: the error E.

subspace clustering methods on the mean classification
accuracy by making effective use of the label informa-
tion in the process of the affinity matrix construction. In
most cases, the improvement of classification accuracy
is significant such as on the Yale and AR face datasets.

2) NNLRR is more robust than the other compared meth-
ods, especially on the dataset with multiple noises. For
example, the images in the AR dataset involve different
errors such as occlusions (glasses and scarf), illumina-
tions, and expressions, it is not easy job to cluster them.
However, the affinity matrix construction and subspace
clustering are integrated into one step in NNLRR so that
NNLRR can find an overall optimum. In other words,
NNLRR can find an optimal balance between the error
fitting (i.e., E) and subspace clustering. Thus, NNLRR
outperforms the similar methods such as LRR, LatLRR,
RobustLatLRR, and NNLRS in most cases.

3) Although SPG imposes nonnegative sparse constraint on
the affinity matrix, such constraint only captures locally
linear structure of the data but the global mixture of sub-
spaces structure may be lost [26]. NNLRR can capture
the global mixture of subspaces structure via the explicit
low-rank constraint. As shown in all the experiments,
NNLRR has obvious advantages in terms of clustering
performance than SPG. Similarly, the global mixture of
subspaces structure is not captured in SSC. Although
NNLRS imposes non-negative sparse and low-rank con-
straints on the affinity matrix, the label information is
not used to guide the affinity matrix construction. Thus,
the improvement of clustering accuracy is not obvious.

4) NNLRR can properly deal with both contiguous occlu-
sions and random pixel corruptions (see Fig. 11).

5) From the deduction of algorithm in Section III-C,
we also find the main limitation of NNLRR is that

the computation cost is still high since it involves to
the SVD. We would like to speed up our algorithm in the
future. In addition, a issue in NNLRR is how to estimate
the parameter β, especially when the data are contami-
nated by different level errors such as outlier, noise, and
corruption, the selection of β is quite challenging.

V. CONCLUSION

In this paper, we propose a novel semi-supervised subspace
clustering method called NNLRR, in which the label infor-
mation is used to guide the affinity construction. Moreover,
NNLRR integrates the affinity matrix construction and sub-
space clustering into one step to guarantee an overall optimum.
An associated efficient iteratively LADMAP is introduced to
solve the optimization problem, which uses less auxiliary vari-
ables and matrix inversion. We conduct adequate experiments
to verify that NNLRR is superior to the state-of-the-art meth-
ods. In the future, we will explore the applications of this idea
on other methods.
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